Em matemática, uma variedade fechada[nota 1] é um tipo de espaço topológico, ou seja, uma variedade compacta sem borda.
Em contextos onde não há limite é possível, qualquer variedade compacta é uma variedade fechada.
O exemplo mais simples é um círculo, que é uma variedade unidimensional compacta. Como um contra-exemplo, a linha real não é uma variedade fechada, porque não é compacta. Como um outro contra-exemplo, um disco é uma variedade bidimensional compacta, mas não é uma variedade fechada porque tem um limite.
A noção de variedade fechada não deve ser confundida com um conjunto fechado. Um disco com seus limites é um conjunto fechado, mas não uma variedade fechada. Quando as pessoas falam de um universo fechado, eles estão quase certamente referindo-se a uma variedade fechada, não um conjunto fechado.
Variedades compactos são, num sentido intuitivo, finito. Pelas propriedades básicas de compactação, uma variedade fechada é a união disjunta de um número finito de variedades fechadas conectadas. Um dos objetivos mais básicos da topologia geométrica é entender o que o fornecimento de possíveis variedades fechado é.
Todas as variedades topológicas compactas podem ser incorporados à por algum n pelo teorema de incorporação de Hassler Whitney.
Notas e referências
Notas
↑Variedade é uma generalização da ideia de superfície. Existem vários tipos de variedades, de acordo com as propriedades que possuem. As mais usuais são as variedades topológicas e as variedades diferenciáveis.
↑No final do verão de 1893, após o Congresso de Matemáticos realizado em Chicago, Felix Klein deu duas semanas de palestras sobre o estado atual da matemática. Klein apresentou sua visão pessoal dos temas mais importantes da época. É notável como a maioria dos tópicos continuam a ser importantes hoje. Klein destaca as obras de Alfred Clebsch e de Sophus Lie. Em particular, ele discute o trabalho Clebsch sobre funções abelianas e compara sua abordagem à teoria com o ponto de vista mais geométrico de Riemann. Klein dedica duas palestras para Sophus Lie, com foco em suas contribuições à geometria, incluindo a geometria de esferas e geometria de contacto. Klein conecta diferentes disciplinas matemáticas através de suas palestras sobre a evolução matemática.
Referências
↑NOCIONES DE GEOMETRIA ANALITICA Y ALGEBRA LINEAL, ISBN 9789701065969, Author: KOZAK ANA MARIA, POMPEYA PASTORELLI SONIA, VERDANEGA PEDRO EMILIO, Editorial: MCGRAW-HILL, Edition 2007